SIMON FRASER UNIVERSITY

Senate Committee for Undergraduate Studies
NEW COURSE PROPOSAL

Course Number: CMPT 373-3

Course Title: Software Development Methods
Short Course Title: Software Development Methods

Course vector: 3 lecture

Course Description (for Calendar). Attach a course outline to this proposal.
Survey of modern software development methodology. Several software-development
process models will be examined, as will the general principles behind such models.
Provides experience with different programming paradigms and their advantages and
disadvantages during software development.

Prerequisite: CMPT 276 or 275.

Corequisite: none

Course(s) to be dropped if this course is approved: none

Rationale for Introduction of this Course:

This course will be required in the proposed Software Systems program for the Surrey
campus.

Scheduling and Registration Information:
Indicate effective semester/year course would be first offered and planned frequency
of offering thereafter.
Fall 20009, initially offered twice annually in Surrey
Waiver required: no
Will this be a required or elective course in the curriculum?

Required in the Software Systems program.

What is the probable enrolment when offered?
40 students.

SCUS 2006 1



Which of your present CFL faculty have the expertise to offer this course?
Toby Donaldson, John Edgar, Anne Lavergne, Uwe Glaesser, Dirk Beyer, Rob
Cameron, Janice Regan

Are there any proposed student fees associated with this course other than tuition fees? (if
so, attach mandatory supplementary fee approval form)
no

Resource Implications:

Note: Senate has approved (S.93-11) that no new course should be approved
by Senate until funding has been committed for necessary library materials.
Each new course proposal must be accompanied by a library report and, if
appropriate, confirmation that funding arrangements have been addressed.

Campus where course will be taught:
Surrey.

Library report status

Provide details on how existing instructional resources will be redistributed to
accommodate this new course. For instance, will another course be eliminated or will the
frequency of offering of other courses be reduced; are there changes in pedagogical style
or class sizes that allow for this additional course offering?

See attached Software Systems Curriculum document.

Any outstanding resource issues to be addressed prior to implementation: space,
laboratory equipment, etc.
See attached Software Systems Curriculum document.

SCUS 2006 2



Approvals

1. Departmental approval indicates that the Department has approved the
content of the course, and has consulted with other Departments and Faculties
regarding proposed course content and overlap issues.

Chair, Dept./School Date

Chair, Faculty Curriculum Committee Date

2. Faculty approval indicates that all the necessary course content and overlap
concerns have been resolved, and that the Faculty/Department commits to
providing the required Library funds.

Date:

Dean or Designate

List which other Departments and Faculties have been consulted regarding the
proposed course content including overlap issues. Attach documentary evidence of
responses.

Other Faculties approval indicates that the Dean(s) or designate of other Faculties
affected by the proposed new course support(s) the approval of the new course.

Date:

Date:

3. SCUS approval indicates that the course has been approved for implementation
subject, where appropriate, to financial issues being addressed.

Course approved by SCUS (Chair of SCUS)

Date:

Approval is signified by date and appropriate signature.

SCUS 2006 3



Proposed CMPT 373 Course Outline

This course exposes students to modern software development methodology. Several
software-development process models will be examined, as will the general principles
behind such models. Students will gain experience with different programming
paradigms and their advantages and disadvantages during software development.

Topics:

- Software development process models: component-based development, iterative
processes

- Agile software development: extreme programming, test-driven development

- Programming paradigms for special purpose software: scripting, relational, prototyping
- General paradigms: Object-oriented, functional, and logic programming

- Reengineering, reverse engineering

- Design patterns, refactoring, aspect-oriented programming

- Formal development methods (formal requirement specification, cleanroom, OCL, Z)

Grading:
Assignments 75%, final exam 25%

Textbook:
none. Web-based resources will be used.

SCUS 2006 4



